Temperature Sensitivity of Magnetic Nanoparticle Hyperthermia Using IR Thermography

Author:

Francis Femy1,Anandhi J. Shebha1,Jacob G. Antilen1,Sastikumar D.1,Joseyphus R. Justin1ORCID

Affiliation:

1. Department of Physics, National Institute of Technology, Tiruchirappalli 620015, India

Abstract

Magnetite nanoparticles are extensively studied for their applications in magnetic nanoparticle hyperthermia. However, existing methods involve invasive methods for monitoring the thermal profile while the heat generated by the magnetite nanoparticles is utilized for cancer therapy. Tumor diagnosis utilizing thermography for monitoring the thermal profile is in the early stage of development since the temperature sensitivity is influenced by various experimental factors. Magnetite nanoparticles embedded in agar matrix which mimics the human tissues and their heating characteristics were investigated using infrared thermography. The magnetite nanoparticles with an average particle size of 10[Formula: see text]nm were subjected to heating in an applied frequency of 500[Formula: see text]kHz. The influence of concentration, area and depth on the heating characteristics of the tumor phantoms were deduced from the thermography images. The parameters that influence the therapeutical sensitivity while using infrared thermography for magnetic nanoparticle hyperthermia, have been studied for potential applications in theranostics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3