TORSIONAL WAVE PROPAGATION AND VIBRATION OF CIRCULAR NANOSTRUCTURES BASED ON NONLOCAL ELASTICITY THEORY

Author:

ISLAM Z. M.123,JIA P.4,LIM C. W.12

Affiliation:

1. Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China

2. City University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, P. R. China

3. Department of Applied Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh

4. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China

Abstract

The presence of size effects represented by a small nanoscale on torsional wave propagation properties of circular nanostructure, such as nanoshafts, nanorods and nanotubes, is investigated. Based on the nonlocal elasticity theory, the dynamic equation of motion for the structure is formulated. By using the derived equation, simple analytical solutions for the relation between wavenumber and frequency via the differential nonlocal constitutive relation and the numerical solutions for a discrete nonlocal model via the integral nonlocal constitutive relation have been obtained. This results not only show that the dispersion characteristics of circular nanostructures are greatly affected by the small nanoscale and the classical theory overestimates the stiffness of nanostructures, but also highlights the significance of the integral nonlocal model which is able to capture some boundary characteristics that do not appear in the differential nonlocal model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3