Fully-Coupled Transient Fluid–Solid Interaction Simulation of the pH-Sensitive Hydrogel-Based Microvalve

Author:

Bayat Mohammad Reza1,Baghani Mostafa1

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

The pH-sensitive hydrogels are attractive candidates to act like a microvalve in microfluidic devices. In this study, we build a theory for the transient simulation of a pH-sensitive hydrogel-based microvalve. Three fields are involved in the theory, namely the electrochemical, mechanical and fluid fields. We utilize the Nernst–Planck equation to describe the ionic flux into the hydrogel through diffusion, electrical migration and convection. We model the hydrogel as a compressible isotropic hyperelastic material with the Gent model. Then we implement the theory in a nonlinear finite element framework to simulate the time-dependent fluid–solid interaction (FSI) behavior of the pH-sensitive microvalve. Our focus is on exploring the physics and phenomena involving in the simulation rather than simulating a complex geometry or presenting a new design. We manifest the significance of the FSI by comparing the transient FSI and non-FSI simulation of the microvalve. The most highlighted novelty of our study is accounting for time-dependent effects. The results demonstrate that the microvalve perfectly closes the channel much before it reaches its stationary state and the closing state, which is of high interest in the microvalve study is different from the stationary state.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3