Infrared problem in perturbative quantum field theory

Author:

Duch Paweł12

Affiliation:

1. Max-Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany

2. Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, 04103 Leipzig, Germany

Abstract

We propose a mathematically rigorous construction of the scattering matrix and the interacting fields in models of relativistic perturbative quantum field theory with massless fields and long-range interactions. We consider quantum electrodynamics and a certain model of interacting scalar fields in which the standard definition of the scattering matrix is not applicable because of the infrared problem. We modify the Bogoliubov construction using the ideas of Dollard, Kulish and Faddeev. Our modified scattering matrix and modified interacting fields are constructed with the use of the adiabatic limit which is expected to exist in arbitrary order of perturbation theory. In the paper, we prove this assertion in the case of the first- and the second-order corrections to the modified scattering matrix and the first-order corrections to the modified interacting fields. We study the physical properties of our construction. We conclude that the electrons and positrons are always surrounded by irremovable clouds of photons. Moreover, the physical energy-momentum operators do not coincide with the standard ones and their joint spectrum does not contain the mass hyperboloid.

Funder

the National Science Center, Poland

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Undressing the Electron;Annales Henri Poincaré;2024-09-04

2. Hamiltonian formulation of the Rothe-Stamatescu model and field mixing;Physical Review D;2024-08-12

3. Infrared finite scattering theory: scattering states and representations of the BMS group;Journal of High Energy Physics;2024-08-07

4. Dress code for infrared safe scattering in QED;Progress of Theoretical and Experimental Physics;2023-04-27

5. Infrared finite scattering theory in quantum field theory and quantum gravity;Physical Review D;2022-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3