Affiliation:
1. Laboratoire de Physique de la Matière Condensée, CNRS – Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
Abstract
In this pedagogical review, we summarize the mathematical basis and practical hints for the explicit analytical computation of spectral sums that involve the eigenvalues of the Laplace operator in simple domains such as [Formula: see text]-dimensional balls (with [Formula: see text]), an annulus, a spherical shell, right circular cylinders, rectangles and rectangular cuboids. Such sums appear as spectral expansions of heat kernels, survival probabilities, first-passage time densities, and reaction rates in many diffusion-oriented applications. As the eigenvalues are determined by zeros of an appropriate linear combination of a Bessel function and its derivative, there are powerful analytical tools for computing such spectral sums. We discuss three main strategies: representations of meromorphic functions as sums of partial fractions, Fourier–Bessel and Dini series, and direct evaluation of the Laplace-transformed heat kernels. The major emphasis is put on a pedagogic introduction, the practical aspects of these strategies, their advantages and limitations. The review gathers many summation formulas for spectral sums that are dispersed in the literature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献