Affiliation:
1. Mathematics, Division of Science and Center for Quantum and Topological Systems (CQTS), NYUAD Research Institute, New York University, Abu Dhabi, UAE
2. The Courant Institute for Mathematical Science, New York University, New York, NY 10012, USA
Abstract
While the classification of noninteracting crystalline topological insulator phases by equivariant K-theory has become widely accepted, its generalization to anyonic interacting phases — hence to phases with topologically ordered ground states supporting topological braid quantum gates — has remained wide open. On the contrary, the success of K-theory with classifying noninteracting phases seems to have tacitly been perceived as precluding a K-theoretic classification of interacting topological order; and instead a mix of other proposals has been explored. However, only K-theory connects closely to the actual physics of valence electrons; and self-consistency demands that any other proposal must connect to K-theory. Here, we provide a detailed argument for the classification of symmetry protected/enhanced [Formula: see text]-anyonic topological order, specifically in interacting 2d semi-metals, by the twisted equivariant differential (TED) K-theory of configuration spaces of points in the complement of nodal points inside the crystal’s Brillouin torus orbi-orientifold. We argue, in particular, that : (1) topological 2d semi-metal phases modulo global mass terms are classified by the flat differential twisted equivariant K-theory of the complement of the nodal points; (2) [Formula: see text]-electron interacting phases are classified by the K-theory of configuration spaces of [Formula: see text] points in the Brillouin torus; (3) the somewhat neglected twisting of equivariant K-theory by “inner local systems” reflects the effective “fictitious” gauge interaction of Chen, Wilczeck, Witten and Halperin (1989), which turns fermions into anyonic quanta; (4) the induced [Formula: see text]-anyonic topological order is reflected in the twisted Chern classes of the interacting valence bundle over configuration space, constituting the hypergeometric integral construction of monodromy braid representations. A tight dictionary relates these arguments to those for classifying defect brane charges in string theory [H. Sati and U. Schreiber, Anyonic defect branes in TED-K-theory, arXiv:2203.11838], which we expect to be the images of momentum-space [Formula: see text]-anyons under a nonperturbative version of the AdS/CMT correspondence.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献