A Persian Medical Question Answering System

Author:

Veisi Hadi1ORCID,Shandi Hamed Fakour1

Affiliation:

1. Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract

A question answering system is a type of information retrieval that takes a question from a user in natural language as the input and returns the best answer to it as the output. In this paper, a medical question answering system in the Persian language is designed and implemented. During this research, a dataset of diseases and drugs is collected and structured. The proposed system includes three main modules: question processing, document retrieval, and answer extraction. For the question processing module, a sequential architecture is designed which retrieves the main concept of a question by using different components. In these components, rule-based methods, natural language processing, and dictionary-based techniques are used. In the document retrieval module, the documents are indexed and searched using the Lucene library. The retrieved documents are ranked using similarity detection algorithms and the highest-ranked document is selected to be used by the answer extraction module. This module is responsible for extracting the most relevant section of the text in the retrieved document. During this research, different customized language processing tools such as part of speech tagger and lemmatizer are also developed for Persian. Evaluation results show that this system performs well for answering different questions about diseases and drugs. The accuracy of the system for 500 sample questions is 83.6%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing a Semi-Intelligent Crawler for Creating a Persian Question Answering Corpus Called Popfa;Journal of Information Systems and Telecommunication (JIST);2024-06-24

2. Persian Depression Detection Chatbot Using Deep Learning;2024 10th International Conference on Web Research (ICWR);2024-04-24

3. Label-based Topic Modeling to Enhance Medical Triage for Medical Triage Robots;Studies in Informatics and Control;2023-12-18

4. FarCQA: A Farsi Community Dataset for Question Classification and Answer Selection;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

5. A Question-Answering Model Based on Knowledge Graphs for the General Provisions of Equipment Purchase Orders for Steel Plants Maintenance;Electronics;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3