Parameter Setting for Deep Neural Networks Using Swarm Intelligence on Phishing Websites Classification

Author:

Vrbančič Grega1,Fister Iztok1,Podgorelec Vili1

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, Maribor, SI-2000, Slovenia

Abstract

Over the past years, the application of deep neural networks in a wide range of areas is noticeably increasing. While many state-of-the-art deep neural networks are providing the performance comparable or in some cases even superior to humans, major challenges such as parameter settings for learning deep neural networks and construction of deep learning architectures still exist. The implications of those challenges have a significant impact on how a deep neural network is going to perform on a specific task. With the proposed method, presented in this paper, we are addressing the problem of parameter setting for a deep neural network utilizing swarm intelligence algorithms. In our experiments, we applied the proposed method variants to the classification task for distinguishing between phishing and legitimate websites. The performance of the proposed method is evaluated and compared against four different phishing datasets, two of which we prepared on our own. The results, obtained from the conducted empirical experiments, have proven the proposed approach to be very promising. By utilizing the proposed swarm intelligence based methods, we were able to statistically significantly improve the predictive performance when compared to the manually tuned deep neural network. In general, the improvement of classification accuracy ranges from 2.5% to 3.8%, while the improvement of F1-score reached even 24% on one of the datasets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3