Z-SCAN MEASUREMENTS OF OPTICAL NONLINEARITIES OF DYE-DOPED LIQUID CRYSTALS

Author:

LIN HUI-CHI1,FUH ANDY YING-GUEY2

Affiliation:

1. Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, ROC

2. Department of Physics, Institute of Electro-Optical Science and Engineering, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan 701, ROC

Abstract

Nematic liquid crystal (NLC) is a material that features a large nonlinear optical response. The nonlinearity can be enhanced by doping a dye agent into a NLC host. In this paper, we review the nonlinear phenomena recently observed for dye-doped liquid crystal (DDLC) films measured using the Z-scan technique, which is a simple, yet powerful method for measuring nonlinear refractive indices (optical Kerr constant) n2 and nonlinear absorption coefficients β. The nonlinear effects of liquid crystals (LCs) include the electronic polarization effect, electrostriction effect, thermal effect and reorientation effect. When LCs are doped with dye agents, the dye-induced orientational effect, photoisomerization effect, and light-induced thermal effect come about to enhance LC nonlinearity. The dominant effect depends strongly upon the spatial, temporal and polarization properties of the excitation laser beam. Generally speaking, the nonlinear effects resulted from the electronic polarization and photoisomerization effects arise from a laser pulse on picosecond duration scale, while electrostriction, thermal and reorientation effects occur on nanosecond ~ microsecond, nanosecond ~ millisecond and millisecond ~ second duration scales, respectively. In this paper, the causation of nonlinear refractive index n2 into various different experimental conditions is summarized, including the changes of the external electric field, external optical field, polarization of pump beam, temperature and the use of deuterated materials. The mechanisms, which influence the nonlinear effect in dye-doped liquid crystal films, are also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3