Enhancing Cable Vibration Measurement at Long Distances Through Super-Resolution Reconstruction and Target Foreground Segmentation

Author:

Cui Depeng123ORCID,Wang Weidong123ORCID,Peng Jun123ORCID,Zhang Yukun123ORCID,Zhao Yida123ORCID,Chen Bin123ORCID,Liu Yan123ORCID,Wang Jin123ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, P. R. China

2. MOE Key Laboratory of Engineering Structures of Heavy-haul Railway, Central South University, Changsha 410075, P. R. China

3. Center for Railway Infrastructure Smart Monitoring and Management, Central South University, Changsha 410075, P. R. China

Abstract

This paper presents a comprehensive non-contact computer vision-based system for monitoring cable vibrations in cable-supported bridges, addressing challenges related to low image resolution and feature extraction difficulties at long distances. The proposed system utilizes deep learning techniques to enhance cable vibration recognition accuracy and offers a practical solution for cable monitoring without the need for target assistance. The core of the system is a novel two-stage model, which combines a super-resolution (SR) video reconstruction algorithm with state-of-the-art Resnet-34 and Swin-B models for precise target foreground segmentation. This approach significantly improves the recognition of target details and enhances the accuracy of cable vibration data in monitoring videos. Furthermore, a phase-based motion estimation (PME) algorithm is employed for precise cable vibration measurement. Field tests conducted on two cable-supported bridges validate the effectiveness of the system. The results demonstrate superior accuracy and noise immunity compared to traditional methods, achieving sub-pixel level precision with a maximum error rate below 2%. This system represents a significant advancement in non-contact structural health monitoring for long-distance cable vibration monitoring in cable-supported bridges.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3