Higher-Order Accurate Explicit Time Schemes with Improved Dissipation Properties

Author:

Kim Wooram1ORCID,Choi Hyung Gyu2,Kwon Seongjin1

Affiliation:

1. Department of Mechanical Engineering, Korea Army Academy at Yeongcheon, Yeongcheon-si, Gyeongsangbuk-do 38900, Republic of Korea

2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea

Abstract

In this paper, a novel family of fourth-order accurate explicit time integration schemes is developed by combining the new time approximations and the explicit fourth-order Runge–Kutta (RK4) method. Inaccurate predictions due to the presence of excessive numerical dissipation are often observed in practical analyses of structural dynamics when the RK4 is employed for both displacement and velocity approximations. To remedy this, novel time approximations with adjustable algorithmic parameters are employed for the displacement vectors while the velocity vectors are approximated by using the RK4. For the complete elimination of numerical dissipation, algorithmic parameters are unconventionally determined by taking the determinant of the amplification matrix as unity. A set of algorithmic parameters obtained from this process makes the new schemes completely non-dissipative while keeping the computational cost the same as the RK4. Due to this improvement, the new schemes have enhanced total energy-conserving capabilities for nonlinear systems and give noticeably more accurate predictions in practical analyses. Until now, controllable numerical dissipation and fourth-order accuracy are not attained simultaneously in a unified set of time schemes. In the new schemes, however, a systematic way to adjust the level of numerical dissipation is also presented while attaining fourth-order accuracy. The numerical results of various test problems show that the new time schemes can provide more accurate predictions for nonlinear conservative dynamic problems than the existing time schemes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3