A Novel Acceleration-Based Approach for Monitoring the Long-Term Displacement of Bridge Cables

Author:

Zhang Han1,Mao Jianxiao1,Wang Hao1ORCID,Zhu Xiaojie1,Zhang Yiming1,Gao Hui1,Ni Youhao1,Hai Zong1

Affiliation:

1. Key Laboratory of Concrete & Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, P. R. China

Abstract

The cables of the long-span bridge are usually featured as ultra-low frequency, hence making the acceleration unable to accurately capture the information, e.g. damping ratios, for assessing the cable state assessment and mitigating the excessive structural vibration. The displacement was approved to be more sensitive to the low-frequency vibration than the acceleration. However, there is still a lack of effective method to accurately monitor the long-term displacements of bridge cables using reference-free methods. To address this issue, this paper develops a novel acceleration-based approach for monitoring the long-term displacements of the cables of long-span bridges. In the monitoring scheme, recursive least squares method is utilized to conduct baseline correction in the time domain integration of acceleration. An adaptive band-pass filtering method considering cable vibration characteristics is used to eliminate noise, thus avoiding the difficulty of selecting the cut-off frequency by experience in traditional methods. A numerical test of an analytical cable model and a field experiment of the hanger of a full-scale suspension bridge are applied to the applicability and robustness of the developed method. Result shows that adaptive band-pass filter considering the vibration characteristics is suitable for estimating the displacements of the cables. The estimated displacements using the developed method agree well with the background truth in both time and frequency domains.

Funder

National Natural Science Foundation of China

National Ten Thousand Talent Program

Graduate Research and Innovation Projects of Jiangsu Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3