Identification of Structural Parameters and Unknown Inputs Based on Revised Observation Equation: Approach and Validation

Author:

He Jia1,Zhang Xiaoxiong1,Xu Bin2

Affiliation:

1. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, College of Civil Engineering, Hunan University, Changsha, P. R. China

2. College of Civil Engineering, Huaqiao University, Xiamen, P. R. China

Abstract

The identification of parameters of linear or nonlinear systems under unknown inputs and limited outputs is an important but still challenging topic in the context of structural health monitoring. Time-domain analysis methodologies, such as extend Kalman filter (EKF), have been actively studied and shown to be powerful for parameter identification. However, the conventional EKF is not applicable when the input is unknown or unmeasured. In this paper, by introducing a projection matrix in the observation equation, a time-domain EKF-based approach is proposed for the simultaneous identification of structural parameters and the unknown excitations with limited outputs. A revised version of observation equation is presented. The unknown inputs are identified using the least squares estimation based on the limited observations and the estimated structural parameters at the current time step. Particularly, an analytical recursive solution is derived. The accuracy and effectiveness of the proposed approach is first demonstrated via several numerical examples. Then it was validated by the shaking table tests on a five-story building model for the robustness in application to real structures. The results show that the proposed approach can satisfactorily identify the parameters of linear or nonlinear structures under unknown inputs.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan University through the Fundamental Development Funds for Young Researchers

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3