Online Model Updating Method with Multiple Inputs Considering Realistic Boundary Conditions in Hybrid Tests

Author:

Du Chunbo12,Zheng Jiayi12,Tian Yingpeng12,Zhang Bo12,Wang Tao12ORCID

Affiliation:

1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Sanhe, Hebei 065201, China

2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China

Abstract

The accuracy of numerical substructures is important in online hybrid tests for assessing structural seismic performance. The recently developed online model updating (OMU) technique can improve the accuracy of numerical substructures by identifying and updating parameters using measurements from physically tested substructures. However, the updated mechanical model often depends on the loading pattern, particularly for models with coupled behaviors in multiple directions. Ignoring this influence may result in a large discrepancy between the simulation results and real performance. In this paper, an OMU method with multiple inputs and considering coupled boundary conditions is proposed to identify the parameters of a complex mechanical model for laminated rubber bearings, where the horizontal performance is significantly influenced by the vertical force. In this method, the horizontal and vertical responses serve as inputs for an unscented Kalman filter to identify the parameters of the mechanical model, and the vertical response provides additional information and constraints. Realistic boundary conditions are achieved by the vertical force-displacement switching control and horizontal displacement control. One of the isolators of a six-story steel moment frame was chosen as the physical substructure. A sophisticated mechanical model was selected to simulate the remaining isolators in the numerical substructure, and the parameters were updated online. The results of the hybrid test indicate that the proposed method provides higher accuracy for estimating the post-yield stiffness ratio than the traditional method. The coefficient of variation was 50% lower, and the convergence efficiency was almost five times higher, demonstrating the effectiveness and accuracy of the proposed method.

Funder

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

National Science Foundation for Distinguished Young Scholars

Heilongjiang Touyan Innovation Team Program

National Natural Science Foundation of China

Heilongjiang Provincial Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3