Nonlinear Vibration and Stability Analysis of Flexible Rotor Supported on SFD by IHB Method

Author:

Ri Kwangchol1ORCID,Kim Kumchol2,Yun Cholil3,Kim Kwangchol4,Choe Tongil5

Affiliation:

1. Department of Light Industry Machinery Engineering, Pyongyang University of Mechanical Engineering, Pyongyang 999093, Democratic People’s Republic of Korea

2. Faculty of Physical Engineering, Kim Chaek University of Technology, Pyongyang 999093, Democratic People’s Republic of Korea

3. Faculty of Forest Science, Kim Il Sung University, Pyongyang 999093, Democratic People’s Republic of Korea

4. Institute of Mechanical Engineering, Academy of Sciences, Pyongyang 999093, Democratic People’s Republic of Korea

5. Miming Engineering, Faculty Kim Chaek University of Technology, Pyongyang 950003, Democratic People’s Republic of Korea

Abstract

In this paper, the nonlinear vibration of a flexible rotor supported on squeeze-film dampers (SFDs) with centering springs is analyzed using the incremental harmonic balance (IHB) method, and bifurcation phenomena appeared in the resonance region are investigated. Complex nonlinear phenomena occur in this system due to the interaction of the fluid-film forces and the unbalance forces of the rotor in the SFD. Systems with these complex nonlinearities cannot be solved using the classical IHB methods. To overcome this problem, the classical IHB method and the alternating frequency/time (AFT) method are combined. The processing of linear matrices is performed in the same way as the classical IHB method, and only the processing of nonlinear force matrix caused by fluid–structure interaction is modified (application of transformation matrix). To prove the validity of the proposed method, the results calculated using the proposed method are compared with the results calculated using the Runge–Kutta method and the results presented in reference. Then, frequency response curves according to changes in bearing parameter [Formula: see text], gravity parameter [Formula: see text], stiffness ratio [Formula: see text], mass ratio [Formula: see text], and unbalance parameter [Formula: see text] are constructed. Stability and bifurcation analyses of the calculated solution are performed using the Floquet theory. The proposed method can be effectively applied to the nonlinear vibration analysis of rotor systems supported on fluid-film bearings.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3