Inter-Storey Isolation Versus Base Isolation Using Friction Pendulum Systems

Author:

Zhang Chunwei1ORCID,Duan Cunkun1ORCID,Sun Li2

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China

2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, P. R. China

Abstract

This study investigates the feasibility of utilizing the friction pendulum system based inter-storey isolation (FPS-I) strategy to replace the friction pendulum system base isolation (FPS-B) for high-rise structures’ vibration control against earthquakes. Both experimental verifications and computational analysis are carried out. A scaled nine-storey experimental model structure is constructed in accordance with the third generation Benchmark problem, and three aspects variant FPS with different slideway radius configurations are designed and manufactured based on the geometric similarity criterion. To assess the dynamic characteristics of FPS-B structure and FPS-I structure, four typical ground motions and four different intensities of peak ground acceleration (PGA) are considered. The findings show that FPS-I can effectively suppress the superstructure’s acceleration as well as affecting the lower substructure’s response. When the same earthquakes occur, the vibration reduction effect of FPS-I strategy is achievable between 50 and 60%, which is obviously superior to FPS-B scheme. The FPS-I technology is observed to have an even greater effectiveness on the entire structure’s vibration reduction during strong earthquakes than the traditional FPS-B technology. The basic mode as well as the higher-order mode responses of the high-rise structure can be controlled, resulting in the seismic response of the entire FPS-I structure at lower levels. The first-order mode contributes the most to the superstructure’s floor acceleration response. The location of the isolation layer changes the dynamic characteristics of the structure substantially. Finally, the finite element models for FPS-B structure and FPS-I structure are developed. It is demonstrated through the mutual comparison of experimental and numerical results that the finite element model is sufficient accurate for parametric studies. The numerical model can reproduce the dynamic characteristics of both isolation strategies with high fidelity. This research emerges the benefits of FPS with inter-storey isolation to address the issue of high-rise structures being prone to be over turned in the case of base isolation.

Funder

Ministry of Science and Technology of China

National Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3