Affiliation:
1. Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University 102206, Beijing, P. R. China
2. Advanced Flywheel Energy Storage Technology Research Center, North China Electric Power University 102206, Beijing, P. R. China
Abstract
Cracks have a significant impact on the stability of rotating machinery. However, most studies focus on rotating machinery with only one crack. This paper discusses the influence of two cracks on the stability of a flywheel rotor-bearing system. In this study, the dynamic models of vertically placed flywheel rotor-bearing system with two open cracks and two breath cracks are established using the finite element method (FEM). Floquet theory is used to calculate the stability of the system and the influence of depth and positions of cracks are analyzed. The results show that breathing cracks cause more unstable regions than open cracks, and the range of rotating speeds over which the rotor is unstable increases with increasing crack depth. In addition, it is observed that when the crack locations are adjacent, the unstable region will become very large, covering most of the crack depth range and speed range, making the rotor extremely unstable. Besides, the bearing stiffness causes an offset in the unstable regions, whereas the damping influences the instability value of the rotor.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献