Study on Structure-Borne Noise Characteristics of Long-Span Steel Truss Bridge in Urban Rail Transit

Author:

Bai Taoping1ORCID,Liang Lin1ORCID,Qi Xiaojun1ORCID,Zhang Kunchun1ORCID,Li Mingyang1ORCID,Jin Zhifei1ORCID

Affiliation:

1. MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment Sichuan University, Chengdu 610065, P. R. China

Abstract

The application of long-span steel bridge in urban rail transit is becoming more and more extensive, but the structure-borne noise of steel bridge induced by passing train is also prominent. Research on the structure-borne noise problem of long-span steel bridge in urban rail transit has positive significance in promoting the sustainable development of steel bridge, and improving the quality of sound environment along rail transit. In this work, dynamic receptance principle, finite element method and statistical energy method are combined to establish the structure-borne noise prediction model of the long-span steel bridge, and the rationality and validity of the model are verified based on field measurement results. Based on the prediction model, the noise radiation characteristics of large-span steel truss bridge in urban rail transit are studied, and the following conclusions are drawn: The bridge deck has the strongest acoustic contribution ability, with the contribution rate of 33–44%, followed by the longitudinal web and transverse web, with the contribution rate of 23–30%, followed by the truss chord, with the contribution rate of 5–8%, and the truss web, longitudinal wing and transverse wing have weak contribution ability, with the contribution rate of less than 2%. The acoustic radiation efficiency of steel truss bridge components reaches its peak at the critical frequency, and the critical frequency is determined by the thickness of steel bridge plate components when the material parameters are fixed. Under ordinary track structures, the middle-to-high frequency noise distribution characteristics of large-span steel truss bridge structure are obvious. Damping pad floating slab track can effectively suppress the high-frequency noise of steel bridge, and the overall sound level can be reduced by about 11–14[Formula: see text]dB.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Sichuan University Postdoctoral Interdisciplinary Innovation Fund

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3