Effects of Notch Depth and Direction on Stability of Local Sharp-Notched Circular Tubes Subjected to Cyclic Bending

Author:

Lee Kuo-Long1,Chang Kao-Hua2,Pan Wen-Fung3

Affiliation:

1. Department of Innovative Design and Entrepreneurship Management, Far East University, Tainan 744, Taiwan, R. O. C.

2. Department of Mold and Die Engineering, National Kaohsiung University of Applied Science, Kaohsiung City, 807 Taiwan, R. O. C.

3. Department of Engineering Science, National Cheng Kung University, East Dist., Tainan 701, Taiwan, R. O. C.

Abstract

Cyclic bending of tubes leads to progressive ovalization of the tube cross-section, and persistent cycling causes catastrophic buckling of the tube. This paper presents the response and stability of SUS304 stainless steel tubes with local sharp-notched depths of 0.2, 0.4, 0.6, 0.8, and 1.0[Formula: see text]mm and notch directions of 0[Formula: see text], 30[Formula: see text], 60[Formula: see text], and 90[Formula: see text] under cyclic bending. The experimental results reveal that the moment–curvature relationship first exhibits cyclic hardening and then a steady loop after a few cycles. Because the notches are small and localized, notch depth and direction show minimal influence on the moment–curvature relationship. In contrast, the ovalization–curvature relationship demonstrates an increasing and ratcheting pattern along with the bending cycle, whereas notch depth and direction show a strong influence on this relationship. Finite-element analysis via ANSYS is used to simulate the moment–curvature and ovalization–curvature relationships, and an empirical model is proposed to simulate the relationship between the controlled curvature and number of cycles required to ignite buckling. The experimental and analytical data agree well with each other.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3