Analytical Solution of Horizontal Dynamic Response of a Floating Pile Embedded in an Elastic–Poroelasitc-Layered Soil

Author:

Yang Zijian1,Zou Xinjun1

Affiliation:

1. College of Civil Engineering, Hunan University, Changsha, Hunan 410082, P. R. China

Abstract

The horizontal dynamic interaction problems of a floating pile with soil have received little attention from scholars in recent years. This paper first proposed an analytical solution for the dynamic characteristics of the floating pile subjected to horizontal steady-state excitation embedded in soil containing the groundwater table level. Based on Biot’s elastodynamic theory, the governing equations of the soil around the pile are obtained. By virtue of the Hankel transform technique and variable separation method, the shaft reactions and base resistances transferred from the soil are calculated and substituted into the dynamic equation of the floating pile derived by the Euler beam model. The dynamic impedance coefficient of the pile head in the frequency domain is obtained by using the transfer matrix method. Comparisons with the previous studies are performed to validate the accuracy of the presented approach. The effects of the thickness of the pile end soil, the slenderness ratio of the pile, the groundwater table level and the relative modulus of pile material on the pile dynamic response are investigated through several numerical analyses. The results show that there is an “active soil thickness” for the horizontal dynamic forced floating piles due to the reflection and refraction of the stand waves. Meanwhile, the effect of the groundwater table level should not be neglected to ensure the safety of pile foundation under service life.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safety Criterion for Hollow Pipe Piles Under Blasting Vibration Based on Wave Function Expansion Method;International Journal of Structural Stability and Dynamics;2023-10-31

2. Longitudinal Seismic Response of a Pipe Pile Embedded in Saturated Thermoelastic Ground Subjected to Rayleigh Waves;International Journal of Structural Stability and Dynamics;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3