Analysis on Thermo-Electrical Principal Parametric Resonance of an Axially Moving Piezoelectric Thin Plate

Author:

Li Zhe12ORCID,Li Yi12ORCID,Hu Yuda12ORCID

Affiliation:

1. School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, P. R. China

2. Hebei Key Laboratory of Mechanical Reliability for Heavy, Equipments and Large Structures, Yanshan University, Qinhuangdao 066004, P. R. China

Abstract

In this paper, principal parametric resonance of an axially moving piezoelectric rectangular thin plate under thermal and electric field is investigated. Based on Kirchhoff–Love plate theory and Von Karman theory, the transverse vibration differential equation of a piezoelectric rectangular thin plate under thermal and electric field is derived by using Hamilton’s principle. The dimensionless vibration equation of piezoelectric rectangular thin plate with parametric excitations is discretized by Galerkin’s method. Then, the multiple scales method is applied to derive amplitude-frequency response equation and the stability conditions of the steady-state solution are obtained by Lyapunov stability theory. Numerical method is used to find the influences of specific parameters on the vibration performance and stability of the system. Based on the global bifurcation diagram and corresponding response diagram, the influences of bifurcation control parameters on the nonlinear dynamic characteristics of the system are discussed. Numerical results illustrate that the system amplitude frequency characteristic curve presents soft spring characteristics. There are periodic and chaotic motions with the increase of velocity and the central temperature difference, and the decrease of plate thickness and velocity will result in the decrease of chaotic threshold. The results also show that increase the velocity perturbation amplitude can prolong the chaotic motion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric Resonance Control of Flexible Manipulator Based on Saturation and Quadratic Nonlinearity Enhancement;International Journal of Structural Stability and Dynamics;2024-08-09

2. Amplitude deflection in a nonlinear MEMS resonator under parametric excitation;International Journal of Non-Linear Mechanics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3