Stability of Thin Web Composite Cantilever Beams of Random Lamination

Author:

Rasheed Hayder A.1,Ahmadi Habiburrahman1,Halim Abdul H.1

Affiliation:

1. Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA

Abstract

This study addresses the analytical treatment of a closed-form buckling equation for lateral-torsional stability of thin web composite cantilever beams under mid-height tip force. The beam is composed of random ply fiber orientations. Classical lamination theory is embedded into the Vlasov plate formulation to make up the framework of the analytical treatment. A closed-form solution is realized when an innovative dimensional reduction is extended to the 3D constitutive stiffness matrix. This was made possible through a two-step process in which the shear strain, lateral curvature, and twisting curvature are retained first. By condensing the shear strain variable, effective lateral, torsional, and coupling stiffness terms were formulated. Applying the equilibrium conditions in the deformed configuration, two differential equations are obtained in terms of the lateral curvature and twisting angle. Eliminating the lateral curvature, the twisting angle differential equation with nonconstant coefficients is generated. This equation is solved using a hybrid numerical-analytical approach yielding an analytical buckling expression. Finite element results are generated to verify the accuracy of the buckling load predictions indicating very good correlation with the buckling equation results regardless of the random lamination applied.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3