STOCHASTIC POST-BUCKLING OF FRAMES USING KOITER'S METHOD

Author:

SCHAFER B. W.1,GRAHAM-BRADY L.1

Affiliation:

1. Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

The objective of this paper is to explore the impact of stochastic inputs on the buckling and post-buckling response of structural frames. In particular, we examine the impact of random member stiffness on the buckling load, and the initial slope and curvature of the post-buckling response of three example frames. A finite element implementation of Koiter's perturbation method is employed to efficiently examine the post-buckling response. Monte Carlo simulations where the member stiffness is treated as a random variable, as well as correlated and uncorrelated random fields, are completed. The efficiency of Koiter's perturbation method is the key to the feasibility of applying Monte Carlo simulation techniques, which typically requires a large number of sample simulations. In an attempt to curtail the need for multiple sample calculations, an alternative first-order perturbation expansion is proposed for approximating the mean and variance of the post-buckling behavior. However, the limitations of this first-order perturbation approximation are demonstrated to be significant. The simulations indicate that deterministic characteristics of the post-buckling response can be inadequate in the face of input randomness. In one case, a frame that is stable symmetric in the deterministic case is found to be asymmetric when randomness in the input is incorporated; therefore, this frame has real potential for imperfection sensitivity. The importance of random field models for the member stiffness as opposed to random variable models is highlighted. The simulations indicate that the post-buckling response can magnify input randomness, as variability in the post-buckling parameters can be greater than the variability in the input parameters.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3