Affiliation:
1. Lehrstuhl für Baustatik und Baudynamik, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
Abstract
A numerical approach is presented for analyzing the forced vibration of a rigid surface foundation. In the analysis, the foundation is discretized into a number of sub square-elements. The dynamic response within each sub-element is described by the Green’s function, which is obtained by the Fourier–Bessel transform and the precise integration method (PIM). Then, a system of linear algebraic equation in terms of the contact forces within each sub-element is derived, which leads to the desired dynamic impedance functions of the foundation. Numerical results are obtained for the foundation not only with a simple geometry, such as circular one, but also with irregular shapes. Comparisons between the results obtained by the proposed approach and the thin layered method are made, for which good agreement is achieved. Also, parametric studies are performed on the dynamic response of the foundation, considering the effects of the material damping, stratum depth, Poisson’s ratio and the contact condition of the soil–foundation interface. Several conclusions are drawn concerning the significance of each parameter. Further application of the method can be easily extended to the analysis of a foundation on a viscoelastic anisotropic multi-layered stratum because no further complexity is introduced except the constitutive matrix needs to be modified.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献