Resonance of a Quasi-Zero Stiffness Vibration System Under Base Excitation with Load Mismatch

Author:

Cheng Chun1,Li Shunming1,Wang Yong1,Jiang Xingxing1

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

Abstract

The primary resonance and 1/3 subharmonic resonance of a quasi-zero stiffness (QZS) vibration system under base excitation with load mismatch are studied in this research. The incremental harmonic balance (IHB) method is applied to obtain highly accurate solutions involving more dynamic behaviors. The effect of the offset displacement mainly caused by overloading on the primary resonance and displacement transmissibility is investigated. The results indicate that the system exhibits a softening characteristic under certain conditions. Although the isolation performance of the QZS system deteriorates, it still outperforms the equivalent linear system for excitation amplitudes that are not too large. The parametric analysis of the 1/3 subharmonic resonance shows that the response is unbounded, and interesting dynamic behaviors can be observed, such as the jump phenomenon. Moreover, the 1/3 subharmonic resonance can be avoided by applying a larger damping or reducing the excitation amplitude to a lower level.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3