Quantitative results on Fejér monotone sequences

Author:

Kohlenbach Ulrich1,Leuştean Laurenţiu23,Nicolae Adriana34

Affiliation:

1. Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany

2. Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, P. O. Box 010014, Bucharest, Romania

3. Simion Stoilow Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, 014700 Bucharest, Romania

4. Department of Mathematics, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

Abstract

We provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fejér monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of so-called metastability in the sense of Tao. Our approach covers examples ranging from the proximal point algorithm for maximal monotone operators to various fixed point iterations [Formula: see text] for firmly nonexpansive, asymptotically nonexpansive, strictly pseudo-contractive and other types of mappings. Many of the results hold in a general metric setting with some convexity structure added (so-called [Formula: see text]-hyperbolic spaces). Sometimes uniform convexity is assumed still covering the important class of CAT(0)-spaces due to Gromov.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Fejér monotone sequences and their finitary content;Optimization;2024-08-16

2. Old and new challenges in Hadamard spaces;Japanese Journal of Mathematics;2023-09

3. On Korpelevich’s extragradient algorithm;Zeitschrift für Analysis und ihre Anwendungen;2023-06-20

4. Logical metatheorems for accretive and (generalized) monotone set-valued operators;Journal of Mathematical Logic;2023-05-22

5. Converse extensionality and apartness;Logical Methods in Computer Science;2022-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3