Affiliation:
1. Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Los Baños, Laguna 4031, Philippines
2. Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
Abstract
Primordial cosmological perturbations are the seeds that were cultivated by inflation and the succeeding dynamical processes, eventually leading to the current universe. In this work, we investigate the behavior of the gauge-invariant scalar and tensor perturbations under the general extended disformal transformation, namely, [Formula: see text], where [Formula: see text] and [Formula: see text], with [Formula: see text] and [Formula: see text] being a general functional of [Formula: see text]. We find that the tensor perturbation is invariant under this transformation. On the other hand, the scalar curvature perturbation receives a correction due the conformal term only; it is independent of the disformal term at least up to linear order. Within the framework of the full Horndeski theory, the correction terms turn out to depend linearly on the gauge-invariant comoving density perturbation and the first time-derivative thereof. In the superhorizon limit, all these correction terms vanish, leaving only the original scalar curvature perturbation. In other words, it is invariant under the general extended disformal transformation in the superhorizon limit, in the context of full Horndeski theory. Our work encompasses a chain of research studies on the transformation or invariance of the primordial cosmological perturbations, generalizing their results under our general extended disformal transformation.
Funder
University of the Philippines
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献