PLANCK-LENGTH PHENOMENOLOGY

Author:

AMELINO-CAMELIA GIOVANNI1

Affiliation:

1. Dipartimento di Fisica, Universitá di Roma "La Sapienza", P.le Moro 2, I-00185 Roma, Italy

Abstract

This author's recent proposal of interferometric tests of Planck-scale-related properties of spacetime is here revisited from a strictly phenomenological viewpoint. The results announced previously are rederived using elementary dimensional considerations. The dimensional analysis is then extended to the other two classes of experiments (observations of neutral kaons at particle accelerators and observations of the gamma rays we detect from distant astrophysical sources) which have been recently considered as opportunities to explore "foamy" properties of spacetime. The emerging picture suggests that there is an objective and intuitive way to connect the sensitivities of these three experiments with the Planck length. While in previous studies the emphasis was always on some quantum-gravity scenario and the analysis was always primarily aimed at showing that the chosen scenario would leave a trace in a certain class of doable experiments, the analysis here reported takes as starting point the experiments and, by relating in a direct quantitative way the sensitivities to the Planck length, provides a model-independent description of the status of Planck-length phenomenology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3