Natural Language Generation from Graphs

Author:

Dong Ngan T.1,Holder Lawrence B.1

Affiliation:

1. School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163, USA

Abstract

The Resource Description Framework (RDF) is the primary language to describe information on the Semantic Web. The deployment of semantic web search from Google and Microsoft, the Linked Open Data Community project along with the announcement of schema.org by Yahoo, Bing and Google have significantly fostered the generation of data available in RDF format. Yet the RDF is a computer representation of data and thus is hard for the non-expert user to understand. We propose a Natural Language Generation (NLG) engine to generate English text from a small RDF graph. The Natural Language Generation from Graphs (NLGG) system uses an ontology skeleton, which contains hierarchies of concepts, relationships and attributes, along with handcrafted template information as the knowledge base. We performed two experiments to evaluate NLGG. First, NLGG is tested with RDF graphs extracted from four ontologies in different domains. A Simple Verbalizer is used to compare the results. NLGG consistently outperforms the Simple Verbalizer in all the test cases. In the second experiment, we compare the effort spent to make NLGG and NaturalOWL work with the M-PIRO ontology. Results show that NLGG generates acceptable text with much smaller effort.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Reference40 articles.

1. J. Ellson, Graph Drawing Software (2003) pp. 127–148.

2. Building Natural Language Generation Systems

3. J. Coch, Natural Language Generation (1998) pp. 300–303.

4. Choosing words in computer-generated weather forecasts

5. S. Williams and E. Reiter, Corpus Linguistics (2003) pp. 899–908.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3