A Study on the Prediction of COVID-19 Confirmed Cases Using Deep Learning and AdaBoost-Bi-LSTM Model
-
Published:2023-11-01
Issue:
Volume:
Page:
-
ISSN:0218-5393
-
Container-title:International Journal of Reliability, Quality and Safety Engineering
-
language:en
-
Short-container-title:Int. J. Rel. Qual. Saf. Eng.
Author:
Shin Dong-Ryeol1,
Chae Gayoung1,
Park Minjae1ORCID
Affiliation:
1. College of Business Administration, Hongik University, Seoul, Korea
Abstract
In this study, AdaBoost-Bi-LSTM ensemble models are developed to predict the number of COVID-19 confirmed cases by effectively learning volatile and unstable data using a nonparametric method. The performance of the developed models in terms of prediction accuracy is compared with those of existing deep learning models such as GRU, LSTM, and Bi-LSTM. The COVID-19 outbreak in 2019 has resulted in a global pandemic with a significant number of deaths worldwide. There have long been ongoing efforts to prevent the spread of infectious diseases, and a number of prediction models have been developed for the number of confirmed cases. However, there are many variables that continuously mutate the virus and therefore affect the number of confirmed cases, which makes it difficult to accurately predict the number of COVID-19 confirmed cases. The goal of this study is to develop a model with a lower error rate and higher predictive accuracy than existing models to more effectively monitor and handle endemic diseases. To this end, this study predicts COVID-19 confirmed cases from April to October 2022 based on the analysis of COVID-19 confirmed cases data from 16 December 2020 to 27 September 2022 using the developed models. As a result, the AdaBoost-Bi-LSTM model shows the best performance, even though the data from the period of high variability in the number of confirmed cases was used for model training. The AdaBoost-Bi-LSTM model achieved improved predictive power and shows an increased performance of 17.41% over the simple GRU/LSTM model and of 15.62% over the Bi-LSTM model.
Funder
National Research Foundation of Korea
Publisher
World Scientific Pub Co Pte Ltd
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science