A Study on the Prediction of COVID-19 Confirmed Cases Using Deep Learning and AdaBoost-Bi-LSTM Model

Author:

Shin Dong-Ryeol1,Chae Gayoung1,Park Minjae1ORCID

Affiliation:

1. College of Business Administration, Hongik University, Seoul, Korea

Abstract

In this study, AdaBoost-Bi-LSTM ensemble models are developed to predict the number of COVID-19 confirmed cases by effectively learning volatile and unstable data using a nonparametric method. The performance of the developed models in terms of prediction accuracy is compared with those of existing deep learning models such as GRU, LSTM, and Bi-LSTM. The COVID-19 outbreak in 2019 has resulted in a global pandemic with a significant number of deaths worldwide. There have long been ongoing efforts to prevent the spread of infectious diseases, and a number of prediction models have been developed for the number of confirmed cases. However, there are many variables that continuously mutate the virus and therefore affect the number of confirmed cases, which makes it difficult to accurately predict the number of COVID-19 confirmed cases. The goal of this study is to develop a model with a lower error rate and higher predictive accuracy than existing models to more effectively monitor and handle endemic diseases. To this end, this study predicts COVID-19 confirmed cases from April to October 2022 based on the analysis of COVID-19 confirmed cases data from 16 December 2020 to 27 September 2022 using the developed models. As a result, the AdaBoost-Bi-LSTM model shows the best performance, even though the data from the period of high variability in the number of confirmed cases was used for model training. The AdaBoost-Bi-LSTM model achieved improved predictive power and shows an increased performance of 17.41% over the simple GRU/LSTM model and of 15.62% over the Bi-LSTM model.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3