Shock-Loading-Based Reliability Modeling with Dependent Degradation Processes and Random Shocks

Author:

Wang Rui1ORCID,Zhu Mengmeng12ORCID

Affiliation:

1. Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, USA

2. Operations Research Graduate Programs, North Carolina State University, Raleigh, North Carolina 27606, USA

Abstract

In general, a system deteriorates due to internal physical degradation and external random shocks. Previous studies mainly focused on establishing dependent competing risk models to evaluate mutual effects of degradation processes and random shocks affecting system health. However, there is a lack of consideration about the magnitude of impacts caused by random shocks on degradation processes. Thus, a shock-loading-based degradation model is proposed to classify the magnitude of impacts from random shocks on degradation processes based on the threshold of the cumulative shock loading. Copula methods are utilized to derive joint reliability function from multiple marginal distributions of degradation processes. Two numerical examples are utilized to demonstrate the reliability prediction performance of the proposed model. First, a simulated example is used. The second example employs the turbofan engine degradation data from the NASA Prognostic Data Repository to show the performance of the proposed shock-loading-based degradation process and its corresponding system reliability model.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3