Development of perfusion bioreactor for whole organ engineering — a culture system that enhances cellular engraftment, survival and phenotype of repopulated pancreas

Author:

Goh Saik-Kia1,Bertera Suzanne2,Vaidya Vimal3,Dumpe Sam4,Barner Sierra3,Mathew Shibin3,Banerjee Ipsita135ORCID

Affiliation:

1. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

2. Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212, USA

3. Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

4. Blue Belt Technologies, Pittsburgh, PA, USA

5. McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA

Abstract

Whole organ engineering has emerged as a promising alternative avenue to fill the gap of donor organ shortage in organ transplantation. Recent breakthroughs in the decellularization of solid organs and repopulation with desired cell populations have generated neo-organ constructs with promising functional outcomes. The realization of this goal requires engineering advancement in the perfusion-based bioreactors to (i) efficiently deliver decellularization agents, followed by (ii) its reconstruction with relevant cell types and (iii) maintenance of viability and function of the repopulated organ. In this study, we report the development and assembly of a perfusion bioreactor with the potential to enable regenerative reconstruction of pancreas. The assembled bioreactor is versatile to efficiently decellularize multiple organs, as demonstrated by complete decellularization of pancreas, liver and heart in the same set-up. Further, the same system is amenable to support organ repopulation with diverse cell types. Using our in-house bioreactor system, we demonstrate pancreas repopulation with both immortalized MIN-6 beta cells and differentiating human pluripotent stem cells. Importantly, we show the significant advantage of perfusion culture over static culture in enhancing cell engraftment, viability and phenotypic maintenance of the repopulated pancreas. In addition, this study is a significant step forward for whole organ engineering as it will facilitate cost-effective and easy assembly of perfusion bioreactors to enable rapid advancement in regenerative organ reconstruction.

Publisher

World Scientific Pub Co Pte Lt

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3