Existence and multiplicity of solutions for Kirchhoff elliptic problems with nondegenerate points via nonlinear Rayleigh quotient in ℝN

Author:

Silva Edcarlos D.1ORCID,Lima Eduardo D.1ORCID,Oliveira Junior José C.2ORCID

Affiliation:

1. Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus Samambaia, Goiânia - GO, 74001-970, Brazil

2. Colegiado de Matemática, Universidade Federal do Norte do Tocantins, Avenida Paraguai, Setor Cimba, Araguaína - TO, 77824-838, Brazil

Abstract

In this work, we prove existence and multiplicity of solutions to a Kirchhoff elliptic problem in the whole space [Formula: see text]. More specifically, we consider the following nonlocal elliptic problem: [Formula: see text] where [Formula: see text], the parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text] almost everywhere in [Formula: see text]. This type of problem contains the function [Formula: see text] known as the Kirchhoff function given by [Formula: see text] with [Formula: see text] and [Formula: see text] Under our assumptions the potential [Formula: see text] and the nonlinearities can be sign changing functions. Hence, our main objective is to prove that the above problem has at least two distinct nontrivial solutions, one of them being a ground state, whenever [Formula: see text] for some suitable [Formula: see text]. The main idea is to use the minimization method in the Nehari manifold together with the nonlinear Rayleigh quotient. In our setting, the main difficulty is ensuring the existence of nontrivial solutions by using the Nehari method considering the Lagrange Multipliers Theorem. In other words, we study the case where the fibering map admits inflections points with [Formula: see text]. Furthermore, for each [Formula: see text], we show a nonexistence result for our main problem. It is important to emphasize that [Formula: see text] is sharp in order to find the existence and multiplicity of nontrivial solutions for our main problem.

Funder

CNPq

FAPEG

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3