An Advanced Active Vision System with Multimodal Visual Odometry Perception for Humanoid Robots

Author:

Wang Xin1ORCID,Jonker Pieter1

Affiliation:

1. Delft BioRobotics Lab, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands

Abstract

Using active vision to perceive surroundings instead of just passively receiving information, humans develop the ability to explore unknown environments. Humanoid robot active vision research has already half a century history. It covers comprehensive research areas and plenty of studies have been done. Nowadays, the new trend is to use a stereo setup or a Kinect with neck movements to realize active vision. However, human perception is a combination of eye and neck movements. This paper presents an advanced active vision system that works in a similar way as human vision. The main contributions are: a design of a set of controllers that mimic eye and neck movements, including saccade eye movements, pursuit eye movements, vestibulo-ocular reflex eye movements and vergence eye movements; an adaptive selection mechanism based on properties of objects to automatically choose an optimal tracking algorithm; a novel Multimodal Visual Odometry Perception method that combines stereopsis and convergence to enable robots to perform both precise action in action space and scene exploration in personal space. Experimental results prove the effectiveness and robustness of our system. Besides, the system works in real-time constraints with low-cost cameras and motors, providing an affordable solution for industrial applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1.

The Mechanism of Traditional Chinese Medicine for the Treatment of Obesity

;Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy;2020-09

2. A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health;Biomedicine & Pharmacotherapy;2020-08

3. Enhancing the settling time estimation of a class of fixed‐time stable systems;International Journal of Robust and Nonlinear Control;2019-05-28

4. A study on a new criterion for minimum-energy perfect control in the state-space framework;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2019-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3