AN INTEGRATED MODEL USING WAVELET DECOMPOSITION AND LEAST SQUARES SUPPORT VECTOR MACHINES FOR MONTHLY CRUDE OIL PRICES FORECASTING

Author:

BAO YEJING12,ZHANG XUN2,YU LEAN2,LAI KIN KEUNG3,WANG SHOUYANG2

Affiliation:

1. Department of Economics and Management, College of Pilot, Beijing University of Technology, Beijing 101101, China

2. Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

3. Department of Management Sciences, City University of Hong Kong, Kowloon, Hong Kong

Abstract

In this paper, a hybrid model integrating wavelet decomposition and least squares support machines (LSSVM) is proposed for crude oil price forecasting. In this model, the Haar à trous wavelet transform is first selected to decompose an original time series into several sub-series with different scales. Then the LSSVM is used to predict each sub-series. Subsequently, the final oil price forecast is obtained by reconstructing the results of the sub-series forecasts. The experimental results show that the integrated model, based on multi-scale wavelet decomposition, outperforms the traditional single-scale models. Furthermore, the proposed hybrid model is the best among all the models compared in this study. To fully integrate the advantages of several models, a combined forecasting model is presented. The study shows that the combined forecasting model is clearly better than any individual model for crude oil price forecasting.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3