Existence of densities for stochastic evolution equations driven by fractional Brownian motion

Author:

de Nascimento Jorge A.1,Ohashi Alberto2ORCID

Affiliation:

1. Departmento de Matemática, Universidade Federal da Paraíba, João Pessoa, Paraíba, 13560-970, Brazil

2. Departamento de Matemática, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil

Abstract

In this work, we prove a version of Hörmander’s theorem for a stochastic evolution equation driven by a trace-class fractional Brownian motion with Hurst exponent [Formula: see text] and an analytic semigroup on a given separable Hilbert space. In contrast to the classical finite-dimensional case, the Jacobian operator in typical solutions of parabolic stochastic PDEs is not invertible which causes a severe difficulty in expressing the Malliavin matrix in terms of an adapted process. Under a Hörmander’s bracket condition and some algebraic constraints on the vector fields combined with the range of the semigroup, we prove that the law of finite-dimensional projections of such solutions has a density with respect to Lebesgue measure. The argument is based on rough path techniques and a suitable analysis on the Gaussian space of the fractional Brownian motion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3