A non-conservation stochastic partial differential equation driven by anisotropic fractional Lévy random field

Author:

Lü Xuebin1,Dai Wanyang1

Affiliation:

1. Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China

Abstract

We study a non-conservation second-order stochastic partial differential equation (SPDE) driven by multi-parameter anisotropic fractional Lévy noise (AFLN) and under different initial and/or boundary conditions. It includes the time-dependent linear heat equation and quasi-linear heat equation under the fractional noise as special cases. Unique existence and expressions of solution to the equation are proved and constructed. An AFLN is defined as the derivative of an anisotropic fractional Lévy random field (AFLRF) in certain sense. Comparing with existing noise systems, our non-Gaussian fractional noises are essentially observed from random disturbances on system accelerations rather than from those on system moving velocities. In the process of proving our claims, there are three folds. First, we consider the AFLRF as the generalized functional of sample paths of a pure jump Lévy process. Second, we build Skorohod integration with respect to the AFLN by white noise approach. Third, by combining this noise analysis method with the conventional PDE solution techniques, we provide solid proofs for our claims.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3