Modeling and stability analysis of HIV/HTLV-I co-infection

Author:

Elaiw A. M.12ORCID,AlShamrani N. H.13

Affiliation:

1. Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

2. Department of Mathematics, Faculty of Science, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt

Abstract

Human immunodeficiency virus (HIV) and human T-lymphotropic virus type I (HTLV-I) are two retroviruses that infect the susceptible CD[Formula: see text]T cells. It is known that HIV and HTLV-I have in common a way of transmission through direct contact with certain body fluids related to infected individuals. Therefore, it is not surprising that a mono-infected person with one of these viruses can be co-infected with the other virus. In the literature, a great number of mathematical models has been presented to describe the within-host dynamics of HIV or HTLV-I mono-infection. However, the within-host dynamics of HIV/HTLV-I co-infection has not been modeled. In this paper, we develop a new within-host HIV/HTLV-I co-infection model. The model includes the impact of Cytotoxic T lymphocytes (CTLs) immune response, which is important to control the progression of viral co-infection. The model describes the interaction between susceptible CD[Formula: see text]T cells, silent HIV-infected cells, active HIV-infected cells, silent HTLV-infected cells, Tax-expressing HTLV-infected cells, free HIV particles, HIV-specific CTLs and HTLV-specific CTLs. We first show the nonnegativity and boundedness of the model’s solutions and then we calculate all possible equilibria. We derive the threshold parameters which govern the existence and stability of all equilibria of the model. We prove the global asymptotic stability of all equilibria by utilizing Lyapunov function and LaSalle’s invariance principle. We have presented numerical simulations to illustrate the effectiveness of our main results. In addition, we discuss the effect of HTLV-I infection on the HIV-infected patients and vice versa.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3