Stochastic dynamical behaviors of SOS/ERK signaling pathway perturbated by external noise

Author:

Jiang Zhiyuan12,Su You-Hui1,Yin Hongwei1

Affiliation:

1. School of Mathematics and Statistics, Xuzhou University of Technology, 221018 Xuzhou, P. R. China

2. School of Science, Shenyang University of Technology, 110870 Shenyang, P. R. China

Abstract

The SOS/ERK cascades are key signaling pathways that regulate cellular processes ranging from cellular proliferation, differentiation and apoptosis to tumor formation. However, the properties of these signaling pathways are not well understood. More importantly, how stochastic perturbations of internal and external cellular environment affect these pathways remains unanswered. To answer these questions, we, in this paper, propose a stochastic model according to the biochemical reaction processes of the SOS/ERK pathways, and, respectively, research the dynamical behaviors of this model under the four kinds of noises: Gaussian noise, colored noise, Lévy noise and fraction Brown noise. Some important results are found that Gaussian and colored noises have less effect on the stability of the system when the strength of the noise is small; Lévy and fractional Brownian noises significantly change the trajectories of the system. Power spectrum analysis shows that Lévy noise induces a system with quasi-periodic trajectories. Our results not only provide an understanding of the SOS/ERK pathway, but also show generalized rules for stochastic dynamical systems.

Funder

NSF of China

NSF of Jiangxi province.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3