How to Take Both Non-Linearity and Asymmetry (Skewness) into Account in Binary Decision Making: Skew-Probit and Skew-Logit in Binary Kink Regression

Author:

Maneejuk Paravee1ORCID

Affiliation:

1. Center of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand

Abstract

In many practical situations, it is desirable to predict binary (“yes”–“no”) decisions made by people. The traditional approach to this prediction assumes that the utility linearly depends on the corresponding parameters, and that the distribution of the difference between predicted and actual utility is symmetric — usually normal or logistic; the corresponding techniques are known as, correspondingly, probit and logit. In real life, utility often non-linearly depends on the parameters, and the corresponding distributions are asymmetric (skewed). There are techniques for dealing with non-linearity; the most widely used such technique — called kink regression — uses piece-wise linear approximations to the utility. There are also techniques that take into account the distribution’s asymmetry; usually, they are based on using special asymmetric distributions: skew-normal and skew-logistic. In this paper, we show how these two techniques to be combined to take into account both non-linearity and asymmetry. On a real-life example, we show that the new technique indeed leads to a better description of human binary decision-making.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty Analysis in Economics and Finance: Preface to the Special Issue;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2020-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3