A Numerical Modeling of A Vascular Implantable Cardiac Endovascular Assistant (AVICENA)

Author:

Rahmani Shahrokh1,Tehrani Pedram1,Karimi Alireza12,Alizadeh Mansour1,Navidbakhsh Mahdi1

Affiliation:

1. Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran

2. Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

Cardiovascular diseases have been recently shown to have a pivotal role in human death and endangers lives of many people around the world. One of the most common cardiovascular diseases is poor performance of left ventricle. In this case, the ventricle cannot pump the blood into the aorta and circulatory system with a suitable power which is required for normal circulatory system. AVICENA is a new cardiac assist device which is implanted into the aorta to help the ventricle to pump the blood into circulatory system with more power and to make a better perfusion of the coronary arteries as well. To reach a desire value of rotational speed of the pump, a control circuit is designed for counterpulsation of AVICENA based on the outcomes from previous studies. This control circuit uses a PID controller. The present study aims to simulate the blood flow through the balloon part of AVICENA in a heart cycle with focusing on the calculation of its pump rotational speed by controlling the electrical current of the pump. Results revealed that the desired rotational speed of the pump can be achieved according to the previous aorta pressure cycle by electrical current control which is higher during balloon inflation in comparison with balloon deflation. These findings may have implications not only for understanding the performance of AVICENA but also to help cardiac mechanics experts to improve the shortcoming of this newborn device.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation;Nanomaterials;2020-08-17

2. Performance and biomechanical analysis of an intra-aortic cardiac assist device in different boundary conditions;Journal of Mechanical Science and Technology;2018-08

3. Numerical Modeling of the Red Blood Cell Motion/Deformation in the Capillary;XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3