Development and Design of an Innovative and Lightweight Reconnaissance Rover Using Composite Materials

Author:

Solazzi Luigi1ORCID,Danzi Nicola1ORCID,Pasinetti Michelangelo1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Brescia via Branze 38, 25123 Brescia, Italy

Abstract

Modern planetary rovers are based on aluminum chassis, but thanks to carbon fiber composites, the weight of such mobility platforms can be dramatically lowered. This paper describes the design of a 6-wheeled rover with a rocker-bogie suspension, adopting carbon fiber laminates and short-fiber-reinforced polymers. This last feature is an innovative approach that fits well with the use of additive manufacturing, allowing for both highly optimized parts and rapid fabrication of spares in future manned missions on the Lunar surface. The structural design was validated against a set of boundary conditions (static analyses) and requirements of launch and space environments (dynamic analyses) as prescribed by European Cooperation for Space Standardization standards. The composite rover was designed to lighten the structure itself and increase the payload-to-total-mass ratio: the composite solution offers a ratio three times higher than the typical rover (ratio from 0.12 to 0.38).

Funder

European Union — NextGenerationEU

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3