USING FAST FOURIER TRANSFORM AND POLYNOMIAL FITTING ON DORSAL FOOT KINEMATICS DATA TO IDENTIFY SIMULATED ANKLE SPRAIN MOTIONS FROM COMMON SPORTING MOTIONS

Author:

FONG DANIEL T. P.1ORCID,KO JACKY K. L.2,YUNG PATRICK S. H.3

Affiliation:

1. National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK

2. Department of Physics, Faculty of Science, The Chinese University of Hong Kong, Hong Kong

3. Department of Orthopedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

Abstract

Ankle sprain is very common in sports, and a commonly suggested etiology is the delayed peroneal muscle reaction time. Recent studies showed the successful attempts to deliver electrical stimulation to the peroneal muscles externally to initiate contraction before it could react, however, the success relies on a workable method to detect ankle sprain injury in time. This study presented a fast Fourier transform and polynomial fitting method with dorsal foot kinematics data for quick ankle sprain detection. Five males performed 100 simulated ankle sprain and 250 common sporting motion trials. Eight gyrometers recorded the three-dimensional angular velocities at 500[Formula: see text]Hz. Data were trimmed with a 0.11[Formula: see text]s window size, the suggested duration of preinjury phase in ankle sprain, and were transformed from time to frequency domain by fast Fourier transform and fitted with a fifth-order polynomial. First-order coefficients from polynomial fitting on frequency space were obtained. The method achieved 97.0% sensitivity and 91.4% specificity in identifying simulated sprains, vertical jump–landing, cutting, stepping-down, running, and walking motions, with vertical jump–landing excluded due to its relatively low specificity (67.3%). The method can be used to detect ankle sprain in sports with mainly floor movements and minimal vertical jump–landing motion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3