ACETABULAR LOAD-TRANSFER AND MECHANICAL STABILITY: A FINITE ELEMENT ANALYSIS COMPARING DIFFERENT CEMENTLESS SOCKETS

Author:

PAKVIS D. F. M.1,JANSSEN D.2,SCHREURS B. W.3,VERDONSCHOT N.24

Affiliation:

1. Orthopaedic and Trauma Surgery Department, Orthopaedic Centre OCON, Geerdinksweg 141, 7555 DL Hengelo, The Netherlands

2. Radboud University Medical Center, Orthopaedic Research Laboratory, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands

3. Radboud University Medical Center, Department of Orthopaedics, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands

4. University of Twente, Department of Engineering Technology (CTW), Postbus 217, 7500AE Enschede, The Netherlands

Abstract

Acetabular stress shielding may be a failure mechanism of acetabular constructs promoting osteolysis, aseptic loosening and failure. We used three-dimensional finite element analysis (FEA) to evaluate the effect of flexible sockets on acetabular stress shielding. The sockets were made of (1) full polyethylene (PE), (2) PE with a metal bearing and (3) a PE insert with a metal backing was used as a traditional stiff implant. We compared the strain energy density and interfacial micro-motions between bone and cementless sockets during walking. In our FEA model, the most elastic socket (case 1) showed the highest levels of micro-motion during walking (400 μm). The most rigid socket (case 3) showed smaller areas of high micro-motions. Assuming a threshold for ingrowth of 50 microns, the flexible cup showed an ingrowth area of almost 40%, whereas the other two cases showed stable areas covering 60% of the total bone–component interface. Furthermore, we found that the introduction of an implant generates a very different strain pattern directly around the implant as compared with the intact case, which has a horse-shoe shaped cartilage layer in the acetabulum. This difference was not affected much by the stiffness of the implant; a more flexible implant resulted in only slightly higher strain levels. Bone strains over 1.5 mm from the cup showed physiological values and were not affected by the stiffness of the implant. Hence, this study shows that the physiological strain patterns are not obtained in the direct periprosthetic bone, regardless of the stiffness of the material.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3