DETECTION OF KNEE OSTEOARTHRITIS BASED ON CENTER OF PRESSURE DATA AND THE BAT ALGORITHM

Author:

MIANDOAB MAHRAD POURYOSEF1,ASHTIANI MOHAMMED N.2,ABEDINI-NASSAB ROOZBEH3ORCID,AKRAMI SEYED MOHAMMAD REZA1

Affiliation:

1. Division of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz, 51666 14761, Iran

2. Department of Physical Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran, Postal Code: 14115-111, Iran

3. Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran, Postal Code: 14115-111, Iran

Abstract

The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf and BAT. The extracted statistical features and the obtained data from healthy individuals and patients are processed with the grey wolf binary algorithm. The results are fed into the binary bat algorithm to select important features and increase the pipeline accuracy. Then the groups are classified using a four-layer neural network. We show that the proposed method with a simple four-layer neural network offers fantastic accuracy in high-speed processing large data and classifies the high-dimensional knee osteoarthritis center of pressure data with appropriate precision, recall, specificity, and F1 values. The proposed method has direct applications in knee osteoarthritis diagnostics in clinics.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3