Multiple Depth Maps Integration for 3D Reconstruction Using Geodesic Graph Cuts

Author:

Zheng Jiangbin1,Zuo Xinxin1,Ren Jinchang2,Wang Sen3

Affiliation:

1. Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer, Northwestern Polytechnical University, Xi'an, P. R. China

2. Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK

3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, P. R. China

Abstract

Depth images, in particular depth maps estimated from stereo vision, may have a substantial amount of outliers and result in inaccurate 3D modelling and reconstruction. To address this challenging issue, in this paper, a graph-cut based multiple depth maps integration approach is proposed to obtain smooth and watertight surfaces. First, confidence maps for the depth images are estimated to suppress noise, based on which reliable patches covering the object surface are determined. These patches are then exploited to estimate the path weight for 3D geodesic distance computation, where an adaptive regional term is introduced to deal with the "shorter-cuts" problem caused by the effect of the minimal surface bias. Finally, the adaptive regional term and the boundary term constructed using patches are combined in the graph-cut framework for more accurate and smoother 3D modelling. We demonstrate the superior performance of our algorithm on the well-known Middlebury multi-view database and additionally on real-world multiple depth images captured by Kinect. The experimental results have shown that our method is able to preserve the object protrusions and details while maintaining surface smoothness.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3