Affiliation:
1. Institut für Angewandte Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria
Abstract
In this paper, we develop a systematic approach to treat Dirac operators [Formula: see text] with singular electrostatic, Lorentz scalar, and anomalous magnetic interactions of strengths [Formula: see text], respectively, supported on points in [Formula: see text], curves in [Formula: see text], and surfaces in [Formula: see text] that is based on boundary triples and their associated Weyl functions. First, we discuss the one-dimensional case which also serves as a motivation for the multidimensional setting. Afterwards, in the two- and three-dimensional situation we construct quasi, generalized, and ordinary boundary triples and their Weyl functions, and provide a detailed characterization of the associated Sobolev spaces, trace theorems, and the mapping properties of integral operators which play an important role in the analysis of [Formula: see text]. We make a substantial step towards more rough interaction supports [Formula: see text] and consider general compact Lipschitz hypersurfaces. We derive conditions for the interaction strengths such that the operators [Formula: see text] are self-adjoint, obtain a Krein-type resolvent formula, and characterize the essential and discrete spectrum. These conditions include purely Lorentz scalar and purely non-critical anomalous magnetic interactions as well as the confinement case, the latter having an important application in the mathematical description of graphene. Using a certain ordinary boundary triple, we also show the self-adjointness of [Formula: see text] for arbitrary critical combinations of the interaction strengths under the condition that [Formula: see text] is [Formula: see text]-smooth and derive its spectral properties. In particular, in the critical case, a loss of Sobolev regularity in the operator domain and a possible additional point of the essential spectrum are observed.
Funder
Austrian Science Fund
European Cooperation in Science and Technology
Publisher
World Scientific Pub Co Pte Ltd
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献