COMBINATORIAL HOPF ALGEBRAS IN QUANTUM FIELD THEORY I

Author:

FIGUEROA HÉCTOR1,GRACIA-BONDÍA JOSÉ M.2

Affiliation:

1. Departamento de Matemáticas, Universidad de Costa Rica, San Pedro 2060, Costa Rica

2. Departamento de Física Teórica I, Universidad Complutense, Madrid 28040, Spain

Abstract

This paper stands at the interface between combinatorial Hopf algebra theory and renormalization theory. Its plan is as follows: Sec. 1.1 is the introduction, and contains an elementary invitation to the subject as well. The rest of Sec. 1 is devoted to the basics of Hopf algebra theory and examples in ascending level of complexity. Section 2 turns around the all-important Faà di Bruno Hopf algebra. Section 2.1 contains a first, direct approach to it. Section 2.2 gives applications of the Faà di Bruno algebra to quantum field theory and Lagrange reversion. Section 2.3 rederives the related Connes–Moscovici algebras. In Sec. 3, we turn to the Connes–Kreimer Hopf algebras of Feynman graphs and, more generally, to incidence bialgebras. In Sec. 3.1, we describe the first. Then in Sec. 3.2, we give a simple derivation of (the properly combinatorial part of) Zimmermann's cancellation-free method, in its original diagrammatic form. In Sec. 3.3, general incidence algebras are introduced, and the Faà di Bruno bialgebras are described as incidence bialgebras. In Sec. 3.4, deeper lore on Rota's incidence algebras allows us to reinterpret Connes–Kreimer algebras in terms of distributive lattices. Next, the general algebraic-combinatorial proof of the cancellation-free formula for antipodes is ascertained. The structure results for commutative Hopf algebras are found in Sec. 4. An outlook section very briefly reviews the coalgebraic aspects of quantization and the Rota–Baxter map in renormalization.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hopf Algebra Theory of Renormalization;Springer Theses;2024

2. Introduction to Perturbative Quantum Field Theory;Springer Theses;2024

3. From Hurwitz numbers to Feynman diagrams: Counting rooted trees in log gravity;Nuclear Physics B;2023-10

4. Hopf Monoids and Generalized Permutahedra;Memoirs of the American Mathematical Society;2023-09

5. Light-Matter Interaction in the ZXW Calculus;Electronic Proceedings in Theoretical Computer Science;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3