Quantization commutes with singular reduction: Cotangent bundles of compact Lie groups

Author:

Boeijink Jord1ORCID,Landsman Klaas1,van Suijlekom Walter1

Affiliation:

1. Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

Abstract

We analyze the ‘quantization commutes with reduction’ problem (first studied in physics by Dirac, and known in the mathematical literature also as the Guillemin–Sternberg Conjecture) for the conjugate action of a compact connected Lie group [Formula: see text] on its own cotangent bundle [Formula: see text]. This example is interesting because the momentum map is not proper and the ensuing symplectic (or Marsden–Weinstein quotient) [Formula: see text] is typically singular.In the spirit of (modern) geometric quantization, our quantization of [Formula: see text] (with its standard Kähler structure) is defined as the kernel of the Dolbeault–Dirac operator (or, equivalently, the spin[Formula: see text]–Dirac operator) twisted by the pre-quantum line bundle. We show that this quantization of [Formula: see text] reproduces the Hilbert space found earlier by Hall (2002) using geometric quantization based on a holomorphic polarization. We then define the quantization of the singular quotient [Formula: see text] as the kernel of the twisted Dolbeault–Dirac operator on the principal stratum, and show that quantization commutes with reduction in the sense that either way one obtains the same Hilbert space [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference59 articles.

1. QUANTIZATION OF SINGULAR REDUCTION

2. Heat Kernels and Dirac Operators

3. North-Holland Mathematics Studies;Binz E.,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3