GRADIENT FLOWS FOR OPTIMIZATION IN QUANTUM INFORMATION AND QUANTUM DYNAMICS: FOUNDATIONS AND APPLICATIONS

Author:

SCHULTE-HERBRÜGGEN THOMAS1,GLASER STEFFEN J.1,DIRR GUNTHER2,HELMKE UWE2

Affiliation:

1. Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstrasse 4, D-85747 Garching, Germany

2. Institute of Mathematics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

Abstract

Many challenges in quantum information and quantum control root in constrained optimization problems on finite-dimensional quantum systems. The constraints often arise from two facts: (i) quantum dynamic state spaces are naturally smooth manifolds (orbits of the respective initial states) rather than being Hilbert spaces; (ii) the dynamics of the respective quantum system may be restricted to a proper subset of the entire state space. Mathematically, either case can be treated by constrained optimization over the reachable set of an underlying control system. Thus, whenever the reachable set takes the form a smooth manifold, Riemannian optimization methods apply. Here, we give a comprehensive account on the foundations of gradient flows on Riemannian manifolds including new applications in quantum information and quantum dynamics. Yet, we do not pursue the problem of designing explicit controls for the underlying control systems.The framework is sufficiently general for setting up gradient flows on (sub)manifolds, Lie (sub)groups, and (reductive) homogeneous spaces. Relevant convergence conditions are discussed, in particular for gradient flows on compact and analytic manifolds. This is meant to serve as foundation for new achievements and further research.Illustrative examples and new applications are given: we extend former results on unitary groups to closed subgroups with tensor-product structure, where the finest product partitioning relates to SUloc(2n) := SU(2) ⊗ ⋯ ⊗ SU(2) — known as (qubit-wise) local unitary operations. Such applications include, e.g., optimizing figures of merit on SUloc(2n) relating to distance measures of pure-state entanglement as well as to best rank-1 approximations of higher-order tensors. In quantum information, our gradient flows provide a numerically favorable alternative to standard tensor-SVD techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3